
Neural Networks Tool for Arabic Script Classification

Hamza A. Ali. and Rajab M.Z.R.Natshah

Zarka Private University , Jordan

alsewadi@hotmail.com and rajab_n@yahoo.com

Abstract:

A neural network that combines some properties of perceptron net with ADALINE net is
developed for classification of Arabic script. It is based on supervised learning or with
tutor technique. A software tool is designed for training and testing any set of character
combinations or fonts. The circuit is tested for various combination sets of Arabic
characters with different fonts and sizes. The network exhibited high recognition and low
error rates having reasonable tolerance to some noise level.

Key words

Artificial Neural Networks, Neocognitron, Pattern recognition, Character Recognition,
Arabic Script Classification.

1. Introduction:

Recognition of typed Latin characters has long been implemented [1,2,3]. However,
research work on Arabic character recognition has still long way to go. Arabic script does
not lend itself easily to the automatic recognition based on today’s technology.

Difficulties in Arabic character scripts are due to its expressive richness as a highly
developed language. Technically, it may be attributed to many reasons of which, the
slightly complicated shape of individual characters, the change of shape for the same
character depending on its position in the word, the use of single, double or triple dots in
various position for many characters, the centering of the letters in the text, the so many
different letters concatenation rules and most difficult of all is the so many vowel signs
(when included) attached to most characters.

Much interest in the use of neural network has grown tremendously for character
recognition of Arabic script. Artificial Neural Networks (ANN’s) lend themselves to be
highly applicable for character recognition as compared with statistical, syntactical or
structural approaches [3]. ANN’s are simply processing structures having many simple,
highly connected processing elements that can process information by its dynamic state
response to external inputs [4,5]. This means that they have certain characteristics with
great similarities to those of biological neural systems. Each neural element or the
building block of NN’s may have many input signals but it is limited to one output signal
as illustrated in figure 1 [6]. It has a set of continuous or discrete inputs, connected

through links from previous neurons, x’s. Each link has an adaptive coefficient called
synaptic weight, w assigned to it.

Fig 1. Processing functions inside the neuron element.

Each synaptic weight might result into amplification, attenuation or possibly changing the
sign of the signal in the link. The output of the jth neuron can be calculated by equation
(1).

 (1)

Where, wij is the weight of the ith input vector to the jth neuron. Furthermore, yj is
processed by an activation function ƒ() in order to give the final neuron’s output
activation signal as in equation (2).

 Yj = ƒ(yj) (2)

The activation function determines the processing inside the neuron. It might be linear or
non-linear function depending on the proposed network. However, the function limits the
output of the neuron to the desired numerical range. Typically, limiting the output
between 0 and 1 or between –1 and +1 for binary or bipolar sigmoid function,
respectively.

Numerous numbers of such processing elements form an Artificial Neural Network,
ANN as shown in figure 2. In layered neural network system, the input signals come
from the outside world. This relationship between input vectors and output signals are
determined usually by first order ordinary differential equations. Auto-adjustment to the
coefficients of the differential equations gives the neural networks its ability to adjust the
values of its internal variables. This ability of self-adapting dynamic system that can
notify its own response to external forces is the outstanding feature of the NN’s. The
basic phenomena of neural learning, is that each link has its own small local memory,
which stores the result of some previous computation as an adaptive coefficient.

 Fig 2. General structure of layered Neural Network

The learning ability of these networks is the basic feature of intelligence [7, 8, 9]. It
implies that the processing element somehow changes its input/output behavior in
response to the environment. In a similar manner to the way that a child learn to identify
various things, NN learns by example [10, 11, 12, 13], i.e. by repeatedly trying to match
that set of input data to the corresponding required output. Therefore, after a sufficient
number of learning iterations, the neural network modifies the weights in order to obtain
the desirable behavior pattern for new input conditions [14]. ANN’s can be classified by
their learning scheme as supervised, un-supervised or batch learning which correspond to
learning with a tutor, no tutor or encoding, respectively.

After this brief introduction in section 1, a short Arabic script review is presented in
section 2 together with description of a program organization for Arabic script
preparation. The proposed network for character classification is outlined in section 3.
Section 4 lists out some of the results obtained and finally section 5 concludes the work.

2. Arabic Script review

Arabic language basic letter set consists of 28 characters, (they are:
(������������������	��
���
����)
 In addition to the so many different fonts, such as Simplified Arabic, Kufi, Andalusi etc.,
they have so many interesting but complicated features. A summary of the most
important features (but not the least) may contain the following:

(1) It is written from right to leftt.
(2) Any of the basic letters may take different shapes depending on its position in the

word whether it comes as the first character, in between character or at the end of a
word.

(3) It might be connected or not connected to the previous and / or the next character in
the word, for example, the letter �� may come at the beginning e.g. � !� , in between
and connected e.g. "#$%, at the end and connected e.g. &'�� and at the end and not
connected e.g.��()%.

(4) An additional special character called hemza (�) may come alone or join many letters

to form a new character, such as �*, �+, �,, -.� and /.
(5) A connecting sign comes on the first letter (�), like (0), e.g. �120.
(6) A sign for cooling down the vowel, called su-koon,)� � ��) , that sits on the letters

resulting in no vowel effect.
(7) Any letter may take any of the vowels, (they are �3���4���5����6���7����8���9�����).

In addition to the Arabic letters and their vowels, the character set would include 10
numerals (i.e. 0 – 9) and a long list of special characters, (such as * / + - [] …).

A study of how to generate the correct shape for any letter is conducted and a program is
written to facilitate a tool that stores each Arabic character as one ASCII code, but can
decide its shape according to its position in the words. Figure 3 shows the ER diagram for
the letter state algorithm of Arabic script. The letters and their states are store in a
database to be called when needed in the learning program.

When all characters, letters with vowels, special symbols and numerals are included, the
combinations of expected characters may go over one thousand shapes, which makes
recognition or classification task a very complicated problem. However, one may starts
experimenting with the basic characters and numerals only, i.e. 38 characters, as we did
in this work.

Fig 3. ER diagram of the letter state algorithm

3. The Proposed Network

3.1 Network Architecture
The proposed neural network is a try to simply combine the perceptron principle for
pattern classification together with the Adaptive Linear Neuron (ADALINE) circuit. The
bipolar sigmoid, (i.e. +1 or –1) activations for both input and target signals is adopted.
The suggested network consists of two layers only, an input layer and output layer with a
bias, as shown in figure 4.

The input layer in this network corresponding to the retina in the visual system consists
of 50x50 pixels matrix. This size is found necessary to accommodate the input Arabic
characters for an acceptable recognition results. While the output layer consists of as
many single neurons as the required number of characters to be recognized, i.e. each
output neurons corresponds to one character. Each output neuron has a bias and

connected via weight matrix to the input layer. The network assembly for one output
neuron may be considered as one network element, we called it Natshah net element.
This network is a supervised net that is a feed forward only.

 Fig 4. The architecture of neural network

The total input to the jth output neuron is calculated by

 (3)

where bj is the bias synaptic weight for the jth neuron.

The weights are given initial values of 0’s, then they are adjusted by adding the weight
differences ∆wij and ∆bj to the previous values after each epoch, given by.
 ∆ wij = α (tj – yj) xi
 ∆ bj = α (tj – yj) (4)

where α is the learning rate, tj and yj are target and actual values for
the jth output neuron, respectively. The values for xij, yj and tj are
either +1 or –1.

The activation output for the jth neuron Yj is calculated, using bipolar sigmoidal function
as
 +1 if yj > θ
 Yj = f(yj) = -1 if yj < θ (5)
 0 elsewhere

where θ is a threshold value.

In our computations, we found θ = 2 and α = 0.1 are suitable choices. The initial weights
are taken as zeros and the stopping criteria for ending the search is for the summation of
weight adjusting values becomes zero or negligible.

3.2 The Natshah Net Learning Tool

A software program is developed in Visual Basic programming to provide a tool for the
network training and testing according to a plan outlined in figure 5. It is designed
generally for implementing the network in training and testing the network using any
character set combination. The main idea of this tool can be summarized as follows.

To learn a number of vectors (characters), they are inserted in the input to the database by
the letter state tool. Then they are taken one by one to a drawing board that transfers them
to the input matrix X. At the end of the training process, the computed weights are saved
into a file to be then used at the testing process.

Fig 5. The operation plan for the learning tool.

Running the tool gives the main output screen that has switches to four functions besides
exit, i.e. learn net, view weights, test net and find test rates, see figure 6.

Fig 6. The main screen for the network tool.

Selecting learning net, gives a screen that allows for selecting letter font, size, start learn
and stop learn. Then the selected set of characters is used for the network training and the
weights are saved. These weights can be viewed, then finally you can enter any character
to test for recognition as shown in figure 7.

Fig 7. The testing of characters screen.

Noise can also be added to any character in order to see their effect on the recognition for
the selected character, as shown in figure 8.

Fig 8.Testing screen with addition of noise.

Another tool is programmed to test for the addition of noise effects on the network
performance for all chosen character set, as shown in figure 9. In this screen, you can
select the set of characters, its font type, size and the noise percentage required to be
added to each input character.

 Fig 9. The test screen for noise effect on recognition

Moreover, some other computations can be viewed too. They are testing speed, or the
time required to test all the chosen character set, the number of epochs required for
acceptable training, the number of patterns correctly recognized, the number of patterns
wrongly recognized and the number of rejected patterns.

4. Results

Although, the proposed network is designed to be trained for any character set, it is
practically implemented for four of the commonly used fonts. They are (1) Arial
(Arabic), (2) Andalus, (3) Simplified Arabic and (4) Tuhama. We have conducted the
work on three sets of characters, namely; the basic Arabic alphanumeric set (i.e. 28 basic
letters + 10 numerals), the Latin alphabetic set (i.e. 52 letters consisting of small and
capital letters) and 10 Arabic numerals only.

4.1 Training and Testing times

Table 1 presents a comparison for the time taken to train the network for the character
sets as well as the time required to test the net for the recognition of all the elements of
the corresponding set. These measurements are for the four chosen fonts.

 Table 1. Training and testing times for the network

Font Number of

characters

Training Time

(seconds)

Testing Time

(seconds)

Arial (Arabic) 38 Arabic

52 English

10 Number

824

1251

30

0.041

0.043

0.033

Andalus 38 Arabic

52 English

10 Number

959

376

26

0.040

0.086

0.037

Simplified

Arabic

38 Arabic

52 English

10 Number

768

1615

25

0.044

0.041

0.036

Tahoma 38 Arabic

52 English

10 Number

1419

335

25

0.041

0.042

0.033

Observed training and testing times for the network varies for different fonts. This may

be attributed to the different features found in each set font. Simplified Arabic is found to
be the fastest to train among the four sets under study, while testing time has showed no
considerable differences.

Numerals set only was much faster to train. This may be attributed to their small number
as compared with other sets rather than for any structural differences.

4.2 Error recognition

In order to see how the recognition improves with increasing number of iterations, figure
10 is plotted for the recognition error measureed for repeated training with increasing
number of epochs. This network test is only included for the 38 Arabic (Arial)
alphanumeric set.

 Fig. 10 recognition error measurements

The recognition error decreases exponentially as the number of training epochs increases.
We found that the error is extremely reduced after about 80 epochs, which might be
considered as fast enough convergence for a practical system.

4.3 Noise effect

Recognition efficiency measurements in the form of correct recognition, error recognition
and rejection rates are conducted on the proposed network for the considered fonts. These
measurements were done for different level of noise added to the character images in the
range from 0 upto 20%. The results are listed in the tables 2-4.

Table 2. Testing rates with no addition of noise.

Font Set Recognition

Rate

Error Rate Rejection

Rate

Arial

(Arabic)

38 Arabic

52 English

10 Number

100%

96%

100%

0%

4%

0%

0%

0%

0%

Andalus 38 Arabic

52 English

10 Number

100%

100%

100%

0%

0%

0%

0%

0%

0%

Simplified

Arabic

38 Arabic

52 English

10 Number

100%

96%

100%

0%

4%

0%

0%

0%

0%

Tahoma 38 Arabic

52 English

10 Number

100%

100%

100%

0%

0%

0%

0%

0%

0%

Table 3. Testing rates with addition of 10% noise.
Font Set Recognition

Rate

Error Rate Rejection

Rate

Arial

(Arabic)

38 Arabic

52 English

10 Number

79%

81%

100%

21%

19%

0%

0%

0%

0%

Andalus 38 Arabic

52 English

10 Number

76%

88%

100%

24%

10%

0%

0%

2%

0%

Simplified

Arabic

38 Arabic

52 English

10 Number

82%

87%

100%

18%

13%

0%

0%

0%

0%

Tahoma 38 Arabic

52 English

10 Number

79%

83%

100%

18%

17%

0%

3%

0%

0%

Table 4. Testing rates with addition of 20% noise

Font Set Recognition

Rate

Error Rate Rejection

Rate

Arial

(Arabic)

38 Arabic

52 English

10 Number

53%

62%

80%

47%

38%

20%

0%

0%

0%

Andalus 38 Arabic

52 English

10 Number

55%

77%

100%

45%

23%

0%

0%

0%

0%

Simplified

Arabic

38 Arabic

52 English

10 Number

55%

76%

100%

42%

33%

0%

3%

0%

0%

Tahoma 38 Arabic

52 English

10 Number

79%

62%

100%

21%

38%

0%

0%

0%

0%

Table 2. Shows that if no noise is added to the image, full recognition is obtained for all
Arabic fonts, while 0.96 correct recognition is obtained for the Latin alphabetic set with
0.04 wrong recognition. No character was rejected recognition.

Table 3 included addition of 10% noise level to the image. This has resulted into
increased recognition error of up to 24% for Arabic (Andalus) alphanumeric set.
However, it is still give full recognition for the numerals.

Table 4 included the addition of 20% noise level to the original images. The results for
correct recognition measurement for the letters both Arabic and Latin show drastic
deterioration, but those for numerals look unaffected for most fonts. However, there is
some error for Arabic (Arial) font.

5. Conclusion

This paper proposes a feed forward neural network that combines properties of
perceptron and ADALINE networks. It is tested for implementation of Arabic script
classification. It also included the design of a software tool suitable for the training and
testing for any character set, together with the effect of adding noise to the original script.
The scheme takes the whole character as one feature. The results have shown
considerable degree of confidence in character recognition and reliability in a noisy
environment. It was evident that when the number of characters increases, the required
time for training is increased considerably and the recognition rate decreases especially
when noise rate is increased.

To improve the system recognition rate, reliability and noise immunity, the author are
working on developing a model that use hidden layers and both feed forward and
feedback training scheme.

References

1. Karnofsky, K., “Neural Networks and Character Recognition”, Dr. Dobb’s Journal,
june, 1993.
2. Bishop, C. M., “Neural Networks for Pattern Recognition”, Oxford University
Press, 2nd Ed., 1999.
3. Caudill, M., “Neural Networks Primer; Part I”, Artificial Intelegence Expert, Vol. 2,
No. 12, Dec. 1987.
4. Chaltra, S., “Use Neural Networks for Problem Solving”, Chemical Engineering
Progress, April 1993.
5. Cho, S, “Neural Network Classifiers for Recognizing Totally Unconstrained Hand
Written Numerals”, IEEE Trans. on Neural Networks, Vol. 8, No. 1, Jan. 1997.
6. Haykin, S., “Neural Networks: A Comprehensive Foundation”, Prentice Hall, 1999.
7. Wasserman, P. “Neural Compution: Theory and Practice”, Van Nostrand Reinhold

International Company Limited, 1989.
8. Davalo, E. and Nain, P., “Neural Networks”, Macmillan Education Limited, 1991.
9. Lippman, R., “An Introduction to Computing with Neural Nets”, IEEE ASSP

Magazine, April 1987.
10. Tank, D. and Hopfield, J., “Collective Computation in Neural-like Circuits”,

Scientific American, Dec. 1987.
11. Mahmmod, M. A. B., “An Equivalent Model as Medium Scale Neocognitron-Like

Brain Model”, M.Sc. Thesis in Electrical Engineering, University of Basrah, Iraq,
1999.

12. Ali, H. A. and Mahmmod, M. A. B., “A Hybrid Neural Network Model for
Character Recognition of Hand Written Numerals”, Journal of the Association of
the Advancement of Modeling and Simulation Techniques in Enterprises (AMSE),
Vol. 45, No. 2, 2002.

13. Ali, H. A. and Mahmmod, M. A. B., “Feature Contents Study of Arabic Numerals
Towards Automatic Recognition Model using Combined Neural Network
Technique”, Accepted ACIT 2002 conference, Qatar, 16-19th Dec. 2002.

14. Gouhara, K.Imai, K. and Uchikawa, Y., “Position and size Representations by
Neural Networks”, Control and Computers, Vol. 17, No.

